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Asymptotic behaviour of rigid-rotor partition functions 

G S Joyce 
Wheatstone Physics laboratory, King’s College, Slrand. London WCZR 2LS, UK 

Received 21 June 1992 

AbslracL Ihe Euler-Maclaurin and Poisson summation formulae are used to derive an 
asymptotic expansion for the function 

m 

* ( a , u )  E C ( n + a ) a p [ - ( n + a ) ’ u ]  
“=O 

in powers of U, where 0 < a < 1. An exact formula for the remainder terms in 
this expansion is established. me theofy of thela functions and the terminant method 
developed by Dingle are also applied lo lhe problem. Finally, lhe m u l l s  are used lo 
investigale the high-temperature behaviour of the rigid-mor partition functions which 
arise in stalislical mechanics. 

1. Introduction 

It is well known (Fowler 1936, Mayer and Mayer 1977, Wilson 1960) that the 
canonical partition functions 

m 

z-(u) = C(4n + 3)exp[-2(n + 1)(2n + 1 ) ~ ]  (1.3) 
“=U 

play a crucial r61e in the theoretical investigation of the rotational contribution to the 
thermodynamic properties of an ideal diatomic gas. In this application the parameter 
U can be written in the form 

U = O / T  (1.4) 

where 0 is a characteristic temperature which is associated with the rotational motion 
of the molecule and T is the thermodynamic temperature. The partition functions 
Z+(u)  and Z - ( U )  are obtained from (1.1) by performing the summation over even 
and odd values of n respectively. We see, thereforc, that the partition functions 
satisfy the simple relation 

Z(U) = Z+(U) + Z-(U) .  (1.5) 
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The series in (1.1)-(1.3) clearly converge vely rapidly for U 2 1, and they provide 
one with accurate low-temperature representations for Z ( U ) ,  Z + ( u )  and Z - ( u ) .  
However, as U approaches zero the series become more slowly convergent and 
alternative procedures must be used to analyse the high-temperature behaviour of 
the partition functions. Mulholland (1928) used a contour integral method to derive 
asymptotic expansions for Z ( u ) ,  Z + ( u )  and Z - ( U )  in powers of U .  From these 
expansions it was found that the asymptotic equalities 

Z+(o) - Z- (U)  - ;z(u) (1.6) 

are valid to aN orders in U.  Mulholland made the following comment on this 
interesting result. 

The partition functions as U + 0 no doubt actually differ by terms of the type 
( l / u )pexp( -a /u )  (a, /I constant), hut this the analysis does not suffice to show. 
These exponentially small differences between the odd and even terms are no doubt 
associated with the fact that the forms of these Z series are closely related to the 
&functions. 

In the present paper we shall use the general Euler-Maclaurin summation formula 
to analyse the detailed structure of the remainder terms in the Mulholland asymptotic 
expansions for the rotational partition functions. The Poisson summation formula, 
the theory of theta functions and the asymptotic methods of Dingle (1973) wlll also 
be used to investigate the problem. 

2. Application d the Euler-Maclaurin summation formula 

We begin the analysis by defining the function 
W 

@ ( a , u ) ~  C ( n + a ) e x p [ - ( n + a ) * u ]  
lL=U 

where 0 < a < 1. It is possible to express the partition functions (1.1)-(1.3) in terms 
of @ ( a , u )  using the relations 

Next we consider the general Euler-Maclaurin summation formula (Steffensen 
1950) 

where 0 6 a < 1 and B k ( a )  denotes a Bernoulli polynomial Of order IC. The 
remainder term in (2.5) is given hy 

W 

R,(a) = -- P,,,(a-z)f("')(z)dz 
m! 
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where 
- 
B , ( z )  = B,(z - [.I) (2.7) 

is the periodic Bernoulli function of order m, and (4 is the largest integer which is 
less than or equal to z. 

We now apply (2.5) to the summation (2.1) with 

f(z) = zexp(-uz2) = -(2u)-'D[exp(-uzz)] 

f'"'(z) = f ( - l ) " u ( m - ' ) / Z  exp(-uzz)H,tl(ul/zz) (2.9) 
f(zr-1) (0) = f [ (27-)!/7-!]( -U)-'  (2.10) 
f'2'-Z'(o) = 0 (2.1 1) 

(2.8) 

where D E d/dz. For this particular case we find that 

where H,( r )  denotes the Hermite polynomial of order 7~ and 7 = 1,2, .  . . . Hence 
we obtain 

(2.12) 

where 

a n d p = l , 2 ,  . . . .  
substituting the standard Fourier series (Rademacher 1973) 

The structure of the remainder term CP(a , a )  in (2.12) can be analysed by 

in (2.13). In this manner we find that 

where 

(2.14) 

(2.15) 

(2.16) 

(2.17) 
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In order to evaluate the integral (2.16) we expand the cosine factor as a "hylor 
series in powers of U and then integrate term-by-term using the formula (Gradshteyn 
and Ryzhik 1980, p 838) 

lmu2"  e X p ( - u 2 ) f h p + ~ ( ~ )  dv = 22p(~)pn!2F1( -p ,n  -I- 1; $1) (2.18) 

where (;jP denotes 5 Pochhmmcr syymbe!. .~.ft,r Epp!;'ing the r~;!! 

we obtain 
2Fl( -P ,"+1.3 .1)  ' 2' = ( i - T L ) p / ( ; ) p  (2.19) 

(2.20) 

where JwJ < CO. It is possible to express (2.20) in the confluent hypergeometric form 

We can also evaluate the integral (2.17) by following a similar procedure. The final 
result is (Gradshteyn and Ryzhik 1980, p 840) 

Jc(P,w)= (-1)p2zP(5)p , F , ( 1 ; - p +  $;-w2). (2.21) 

Js(p,w) = (-1)P22P ~ ~ / ~ w ~ P + ~ e x p ( - w ~ ) .  (222) 
We now make the substitution a = 4 in (2.12) and (2.15) and apply the relations 

(2.2) and (2.21). This procedure yields the basic formula 
P 

~ ( o )  = u-1exp(ao) I ~ + ~ c ~ o ~ + ~ ~ ( + . o j ]  (2.23) 
~ rl: 

where 

(2.24) 

and B2, denotes the Bernoulli number of order 2 r .  The result (2.24) is in agreement 
with the work of Mulholland (1928), while the expression (2.25) gives a new exuct 
representation for the remainder in the Mulholland asymptotic expansion for Z( c). 

in (2.12) and (2.15) and apply the 
relations (2.3). (2.4), (2.21) and (2.22) it is found that 

If we make the substitutions n = a and a = 

where 

~ ( a )  = ( T ~ / U ) ' ' ~  C(-1)"- '(2m ~~ - 1)exp[-n2(2m - 1 ) ~ / ( 4 u ) ] .  (2.27) 

We see from (2.26) that the asymptotic expansion for Z,(u) has an additional 
remainder term f T ( o )  which is independent of the value of p .  It should also be noted 
that the structure of the formula (2.27) for T(u)  is consistent with the Mulholland 
conjecture quoted in the introduction of the present paper. A comparison of (2.23) 

z,(o) = t [z(o) ko- l exp(au )F(o ) ] .  (2.28) 

m 

m z l  

with (2,261 yields the further re!atinn 
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3. Alternative methods 

In this section we shall describe several other methods which can be used to derive 
the basic results (2.23), (2.26) and (2.28). 

3.1. PoiFson summation formula 

We begin by applying the Poisson summation formula (Bellman 1961, Apostol 1974) 

to the continuous function 

zexp(-ai2)  for I >, o 
0 for 2 < 0 

where O<a < 1. In this manner we find that 

m 

Q’(a,a) = (2u)-’ 1 + 2 c c o s ( 2 7 r k a )  ux(2uy)exp(-y2)Hl(y)dy  [ k = l  

(3.1) 

(3.2) 

(3.3) 

whelp. w = akg-1/2.  Next the htegrds i!! (3.3) z r p  .vz!”z!ed 3si.g ( 2 . 5 ,  (2.!7), 

* ( a ,  U )  = (2u)-’ 1 + 2Ccos (2 r rka )  &(I;  ;; - r r V / U )  

(2.21) and (2.22). Hence we obtain 

m 

[ k = l  

m 

+ 2 ( r r 3 / 0 ) l / 2 ~  ksin(2rrka) e x p ( - r r 2 ~ / a ) ]  . (3.4) 
k = l  

The confluent hypergeometric function in (3.4) can be expressed in the alternative 
form 

,F,(l;f;-w*) = 1-2wD(w)  (3.5) 

where 
w 

D(w)  = exp(-w2)L exp(zZ)dn (3.6) 

is the Dawson integral (Gautschi 1965). 
We now use the hypergeometric identity 

F (1; -m + I; 4 2 )  = (m - f )  w-2[-1+ ]E,,(% -m + z;-w 1 2  )] 
1 1  2 (3.7) 
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with m = 1,2,. . . , p  to establish the relation 

(3.8) 
1F1(1; ;;-4 = - E(1) w-2' + (;),u-2, 'Fl(1;-p + f ; -w 2 ) .  

2 r  
r=l 

7he substitution Of this result in (3.4), with a = ; and w2 = n2k2/,,, yields 

where 

(3.10) 

and E,( i, u)-is defined in (2.25). If the standard formula 

(3.11) 
is applied to (3.9) we obtain the expected asymptotic expansion (2.23) for Z( U). In 
a similar manner we can also derive the basic expansion (2.26) by substituting a = 
and a = in (3.4). 

3.2. Connection with theta functions 
We follow the theta function notation of Whittaker and Watson (1927) and write 

q(2r) = (-1)7(2- - 1) (2n)2'B2r/[2(2r)!] 

m 

fil(zlr) = 2 d l 4  E ( - 1 ) ~ q ~ ( ~ + ' ) s i n ( 2 n  + 1)r (3.12) 
"=U 

where 
q = exp( r i r )  

and Im( T )  > 0. From this definition we see that 
(3.13) 

(3.14) 

where 29;(zIr) denotes the derivative of f i l ( z l ~ )  with respect to the variable z .  
A comparison of (3.14) with (1.1)-(1.3) gives the relation 

z+(u)  - z-(u) = fexp(iu)fi;(o I i u / r ) .  

z,(m) = ;[z(u) + fexp($a)fi;(O I iu/i7)]. 

+ (-iT)'I229;(0 I T )  = iT-'O;(O I - 7 - l )  

z , (u)  = f[z(a) f f ( n / ( ~ ) ~ / ~ e x p ( : u )  fi;(o 1 ii7/u)]. 

~ ( u )  = ;(r3/a)1/229;(0 1 i n / u ) .  

(3.15) 
It is also clear from (1.5) that 

We can now use the Jacobi imaginaly transformation (Whittaker and Watson 1927) 

to express (3.16) in the alternative form 

(3.16) 

(3.17) 

(3.18) 
If the series (3.14) is substituted in this result we obtain (2.28) with 

(3.19) 
Finally, we note that the derivative (3.14) can be written in terms of theta functions 
using the Jacobi identity (Whittaker and Watson 1927) 

$ ; (0  I T )  = fiZ(0 I 7 )  93(0 I T )  I T )  ' (3.20) 
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3.3. Application of D n g k  terminants 

Our aim in this Subsection is to show that the remainder term &p(i,o) in the 
basic formula (2.23) for Z(a)  can be constructed direcfly from the late coefficients 
{cptj; j = 1 , 2 , .  . .). In the first stage of the analysis we formally define the 
termination of the asymptotic series in (2.23) as 

(3.21) 

(3.22) 

(3.23) 

Next we give a meaningful interpretation of the series (3.23) by following a general 
procedure developed by Dingle (1973). In this manner we find that 

where An-+(-z) denotes one of Dingle's basic terminants. The application of (3.24) 
to (3.22) yields 

7p(o)  = (2p + 1)( f ) , (a /*"P+ 'C(- l )k- i rC-Zp-2K pt+R2k*/"). 

It can also be shown from the work of Dingle (1973, p 416) that 

00 

(3.25) 
k = l  

Ap+;(-c) = -2z(2p+I) - ' ,F1(1; -p+ i ; - z ) .  (3.26) 

If this result is substituted in (3.25) we find that T,( U )  is equal to the remainder term 
&p( $, U )  which is defined in (2.25). We see, therefore, that the  Dingle interpretative 
procedure leads to the exacf termination of the truncated asymptotic series for Z(o).  
For the case of the partition functions Z+(o), it is ciear from (2.26) that the Dingie 
analysis of the late terms will only give an improved asymptotic apprarimafion because 
of the presence of the additional terms &?=(a). 

4. Application and concluding remarks 

If we have a gas consisting of N molecules of parahydrogen then it can be shown 
(Fowler 1936) that the rotational contribution to the heat capacity of the gas is 
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while for a similar gas of orthohydrogen we have the rotational heat capacity 

where kg is the Boltzmann constant. Normal hydrogen gas is a 3 1  metastable mixture 
of orthohydrogen and parahydrogen respectively and has, therefore, a rotational heat 
capacity 

C" = $+ + IC - .  (4.3) 

The application of the formula (2.26), wifhouf the remainder terms, to (4.1) and 
(4.2) leads to the asymptotic expansion 

C*/(Nkd-Cn/(NkI) - 1 + ( d ) u 2 + ( ~ 5 , . " + 4 ~ ) ~ 4 + ( ~ ) u  YZB 5 

(4.4) I iui 578 + (-)a6 + 0(u7) 
as U -+ 0. We can investigate the asymptotic behaviour of the diferences between 
C+, C- and C, .. by . using - the complete relation (2.28). In this manner, we obtain the 
new result 

(c+ - c - ) / ( N ~ , )  = qc, - c - ) / ( N ~ , )  ,. ~ ( n " / ~ ' ) ' / ~ e x p [ - n ~ / ( 4 ~ ) ]  

x [ I -  (7~-~/12)(144+ n2)u+(n-4/1440)(17280+480aZ- l ln4)u2 

+ (~-~/120%0)(40320 - 3696~'  - 241rr4)u3 

- (7~-~/29030400)(2@1 120 + 6 9 4 0 8 0 ~ ~  + 22651x4)u4 + O ( u s ) ]  

(4.5) 

as U - 0. The formula (4.5) also has, lo leading order, a remainder term of the lype 
717-7/2 exp!-3~Z/(4.)], where 7 is a constant. 

Finally, we substitute a = 0 in (2.12) in order to obtain the further asymptotic 
expansion 

where 

The result (4.6), without the remainder term lP(O,u) ,  has also been obtained by 
Sutherland (1930) and Cahn and Wolf (1976). It should be noted, however, that in 
bofh these papers the signs of the mefficients in the asymptotic expansion (4.6) are 
given incorrectly. 
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