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Abstracl. The Euler-Maclaurin and Poisson summation formulae are used to derive an
asympiotic expansion for the function

V(a,o)= Z(n + a) exp[~(n + a)zo']

n=0

in powers of &, where 0 € 2« < 1. An exact formula for the remainder terms in
this expansion is established. The theofy of theta functions and the tetminant method
developed ty Dingle are also applied to the problem. Finally, the resuits are used to
investigate the high-temperature behaviour of the rigid-rotor partition functions which
arise in statistical mechanics.

1. Introduction

It is well known (Fowler 1936, Mayer and Mayer 1977, Wilson 1960) that the
canonical partition functions

Z(o) = (2n + yexp[-n(n + 1)a] (1.1)
n=0
Z. (o) =) (4n+ 1) exp[-2n(2n + 1)o] (L2)
n=U
Z_(a) = (4n +3)exp[-2(n + 1)(2n + 1)o] (1.3)
n=0

play a crucial réle in the theoretical investigation of the rotational contribution to the
thermodynamic properties of an ideal diatomic gas. In this application the parameter
o can be written in the form

o=0/T (1.4)

where © is a characteristic temperature which is associated with the rotational motion
of the molecule and T is the thermodynamic temperature. The partition functions
Z,(o) and Z_(o) are obtained from (1.1) by performing the summation over even
and odd values of n respectively. We see, therefore, that the partition functions
satisfy the simple relation

Z(o)=Z, (o) + Z_(0). (1.5)
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The series in (1.1)-(1.3) clearly converge very rapidly for o 2> 1, and they provide
one with accurate low-temperature representations for Z(o), Z, (o) and Z_(o).
However, as ¢ approaches zero the series become more slowly convergent and
alternative procedures must be used to analyse the high-temperature behaviour of
the partition functions. Mulholland (1928) used a contour integral method to derive
asymptotic expansions for Z(¢), Z (o) and Z_(o) in powers of . From these
expansions it was found that the asymptotic equalities

Z (o)~ Z (a)~1Z(a) (1.6)

are valid to aff orders in o. Mulholland made the following comment on this
interesting result.

The partition functions as ¢ — 0 no doubt actually differ by terms of the type
(1/o)* exp(—a /o) (o, p constant), but this the analysis does not suffice to show.
These exponentially small differences between the odd and even terms are no doubt
associated with the fact that the forms of these Z series are closely related to the
J-functions.

In the present paper we shall use the general Euler-Maclaurin summation formula
to analyse the detailed structure of the remainder terms in the Mulholland asymptotic
expansions for the rotational partition functions. The Poisson summation formula,
the theory of theta functions and the asymptotic methoeds of Dingle (1973) will also
be used to investigate the problem.

2. Application of the Euler—Maclaurin summation formula

We begin the analysis by defining the function

¥(a,0)= 3 (n + a) expl—(n + a)%o] @1)

n=0

where 0 € a < 1. It is possible to express the partition functions (1.1)-(1.3) in terms
of ¥(a,o) using the relations

Z(o) = 2exp(;—cr)'lll(%,a) 2.2)
Z, (o) =dexp(Lo)¥(},40) ‘ (2.3)
Z_(o) =4exp(3o)¥(3,40). (2.4)

Next we consider the general Euler~Maclaurin summation formula (Steffensen
1950) :

3 = [7 _v Bala) oy
Z%f(n+a)—fu flayoe =30 HEENO 4 ) @9

where 0 € o < 1 and B,(q) denotes a Bernoulli polynomial of order k. The
remainder term in (2.5) is given by

R, (a) = _% fum B, (a—z)f™)(z)dx (2.6)
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where

B,,(z) = B, (z - [2])
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is the periodic Bernoulli function of order m, and (z] is the largest integer which i

less than or equal to z.
We now apply (2.5) to the summation (2.1) with

f(z) = zexp(—o2?) = —(20)"'Dlexp(—oz?)]
where D = d/dz. For this particular case we find that

f(z) = (-1 exp(—oa®) H,p (012 2)
FEr00) = H(2m)/ P (=0)™ !

FE2(0y =0
where H, (z) denotes the Hermite polynomial of order n and r = 1,2,....
we obtain

U(a,o) = (1+Z 2’"(“) a)r+5p(a,a'))

r=1

where

(2P 1)/2 — ) 2
Ep(a, o) = ——(—2-1-))—'—/0. By, (a—r)exp(—ax) Hypp(a/ ) dx
and p=1,2,..

(2.8)

2.9)
(2.10)
(2.11)

Hence

(2.12)

(2.13)

The structure of the remainder term £,(a,c) in (2.12) can be analysed by

substituting the standard Fourier series (Rademacher 1973)

= _ -1 =, cos(2mka)
sz(ﬂf) = (-1 2(217)!; W

in (2.13). In this manner we find that

O P

sin(2rka)
2:______] , mho™1/2
+ 2 2rky® s(p, mko )]

where
Je(prw) = f cos(2y) exp(~y%) Hayy1(y) dy
0

Is(prw) = ]u " Sin(2wy) exp(—y2) Hapyr(3) dy -

(2.14)

(2.15)

(2.16)

(2.17)
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In order to evaluate the integral (2.16) we expand the cosine factor as 2 Taylor
series in powers of w and then integrate term-by-term using the formula (Gradshteyn
and Ryzhik 1980, p 838)

[ V) Hypy(0) dy = (1 2%(3), n, (- + 151 (218)
wher i denotes a Pochhammer svymhbol After annlving the racnlt
2 J PP J l LIpw AT Ui
ZFI(-pa % 1) “(z_n)p/(i)p (219)
we obtain
P lp (—w )
e(p,w) = (-1)P 2% (1), Z s (2.20)
n=0 2
where |w| < oo, It is possible to express (2.20) in the confluent hypergeometric form
Je(p,w) = (=127 (3), Fi(L~p + 1 —w?). (2.21)

We can also evaluate the integral (2.17) by following a similar procedure. The final
result is (Gradshteyn and Ryzhik 1980, p 840)
B(p,w) = (=1)P 229 w12 ¥+l exp(~w?) . (2.22)

We now make the substitution a = % in {(2.12) and (2.15) and apply the relations
{2.2) and (2.21). This procedure yields the basic formula

Z(a) =0~ exp(4a)[1+Zc o +£(2,a) (2.23)

whete
e, = (=D 2Y T 1) B, /7! (2.24)

£y(3,0) = ( )()Z(kzp Fi(—p + Li—ntkife)  (225)

and B,, denotes the Bernoulli number of order 2r, The result (2.24) is in agreement
with the work of Muiholland (1928), while the expression (2.25) gives a new eract
representation for the remainder in the Mulholland asymptotic expansion for Z{«).

If we make the substitutions o = 1 and « = 2 in (2.12) and (2.15) and apply the
relations (2.3), (2.4), (2.21) and (2.22) it is found that

4
Z, (o) = (20)" exp(Lo) (1 +3 c.o"+E (5 a) :L-f(a)) (2.26)
r=1
where

o
Flo) = (n*1a)V2 3" (-1)™~1(2m — 1) exp[-=*(2m ~ 1)*/(40)]. (.27
m=1
We see from (2.26) that the asymptotic expansion for Z,.(o) has an additional
remainder term £ F (o) which is independent of the value of p. It should also be noted
that the structure of the formula (2.27) for F(o) is consistent with the Mulholland
conjecture quoted in the introduction of the present paper. A comparison of (2.23)
with {2.26) vields the further relation

Zylo) = 3Z(o) o exp(fo)F(a)]. (2.28)
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3. Alternative methods

In this section we shall describe several other methods which can be used to derive
the basic results (2.23), (2.26) and (2.28).

3.1. Poisson summation formula

We begin by applying the Poisson summation formula (Bellman 1961, Apostol 1974)

o

> flnta)y= ) exp(Zwika)/m f(z)exp(—2rike)dx (3.1

n=—co k=—o0

to the continuous function

2
zexp({—ox”) forz >0
f(2)= { M 62)
forz <0
where 0<a < 1. In this manner we find that
o oo
¥(a,o0)= (20)"[1 + ZEms(Zrka) f cos(2wy) exp(—y*) H,(y) dy
k=1 b
+2Z sin(27rka)j sin(uy)exp(_yl)ffl(y)dy] (3.3)
k=1 u
where w = wko-/2. Next the integrals in (3.3) are evaluated using (2.16), (2.17),
(2.21) and (2.22). Hence we obtain
o0
U(a,0) = (20)—1[1 +2) cos(2rka) [Fi(L; §; -7k /o)
k=1
+ 2(71‘3/0)1/22 ksin(27rka)exp(—1r2k2/cr)] . (3.4)

k=1

The confluent hypergeometric function in (3.4) can be cxpressed in the alternative
form

F(L L —w?) = 1-20D(w) 3.5)

where
P(w) = exp(~w?) / ) exp(z?) dz (3.6)
A}

is the Dawson integral (Gautschi 1965).
We now use the hypergeometric identity

Fi(l=m + 3 —?) = (m = Hw =14+ F(L-m + §i-w?)] (.7)
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with mn = 1,2,...,p to establish the relation
P

Fi(l h-wd) = = (), w0 4+ (1), 0 F(L-p + L —w?). (3.8)

r=1

The substitution of this result in (3.4), with @ = } and w? = 72k?/0, yields

P
Z{g) = a'lexp(%a) (1 + 22(%), n(2r)(a/7rz)" +Sp(%,a)) (3.9)

a1
. r=1 E

where
n(2r) =y (—1F k¥ (3.10)
k=1

and £,(},0)is defined in (2.25). If the standard formula

n(2r) = (~1)7 (277 = 1) (20)* By, [(2(2r)] (3.11)

is applied to (3.9) we obtain the expected asymptotic expansion (2.23) for Z(o). In
a similar manner we can also derive the basic expansion (2.26) by substituting o = 1

a3
and o = 2 in (3.4).

3.2, Connection with theta functions
We follow the theta function notation of Whittaker and Watson (1927} and write

o0

B (z|r) = 2¢"* > (-1)" ¢"**Vsin(2n + 1)z (3.12)
n=0
where
q = exp(wir) (3.13)
and Im(r} > 0. From this definition we see that
91(017) = 2¢"* 3 (~1)"(2n 4 1)g"*+D (3.14)
n=0

where 19'1(z|r) denotes the derivative of J,(z|r) with respect to the variable z.
A comparison of (3.14) with (1.1)-(1.3) gives the relation

Z, (o)~ Z_(a)=Lexp(}0)0(0]ic/m). (3.15)
It is also clear from (1.5) that

Zy(o) = HZ(o) £ Lexp(}a)9,(0 ] i /7). (3.16)
We can now usc the Jacobi imaginary transformation (Whittaker and Watson 1927)

+ (=it 9,0 | 7y = irtoy(0 | -1 (3.17)
to express (3.16) in the alternative form

Zy(0) = Y Z(o) £ Y(n /o) exp(lo) 9)(0 ] in/a)]. (3.18)

If the series (3.14) is substituted in this result we obtain (2.28) with
Floy= }(=3/o)?9y(0|in]o). (3.19)

Finally, we note that the derivative (3.14) can be written in terms of theta functions
using the Jacobi identity (Whittaker and Watson 1927)

91(0 | 7) = 32(0] 7) 95(0| 7) 9,00 7). (3.20)
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3.3. Application of Dingle terminants

Our aim in this Subsection is to show that the remainder term Sp(-%,a) in the
basic formula (2.23) for Z(o) can be constructed directly from the late coefficients
{cpﬂ-;j = 1,2,...}. In the first stage of the analysis we formally define the
termination of the asymptotic series in (2.23) as

(=]
T,(o)= > c.o". (3.21)
r=p+1

We now use (3.9) to write (3.21) in the expanded form

T,(o) =2) (-1)*1Q, 1 (x*k? /o) (3.22)
k=1
where
Qn(z)=> (1), =7". (3.23)

Next we give a meaningful interpretation of the series (3.23) by following a general
procedure developed by Dingle (1973). In this manner we find that

Qn(@) = (1pz K, _y(~2) (3.24)

where fin,%(—-x) denotes one of Dingle’s basic terminaats. The application of (3.24)
to (3.22) yields

T,(0) = (2p + D(1), (o /n2)?*! kX_jl(—l)*-‘k-zp-ZA,,ﬁ(—vr%Z/a) . @)

It can also be shown from the work of Dingle (1973, p 416) that
A2y ==2z2p + 1) AL -p+ 5i-a). (3.26)

If this result is substituted in (3.25) we find that 7,(o} is equal 10 the remainder term
Ep(%, o) which is defined in (2.25). We sce, therefore, that the Dingle interpretative
procedure leads to the exact termination of the truncated asymptotic series for Z( o).
For the case of the partition functions Z, (o), it is ciear from (2.26) that the Dingie
analysis of the late terms will only give an improved asymptotic approximation because
of the presence of the additional terms 7 (o).

4. Application and concluding remarks

If we have a gas consisting of N molecules of parahydrogen then it can be shown
(Fowler 1936) that the rotational contribution to the heat capacity of the gas is

dz
C, = NicBaza?ln Z, (o) (4.1)
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while for a similar gas of orthohydrogen we have the rotational heat capacity
2 d?
C_ = Nkgo a—a—z—ln Z_(o) 4.2)

where ky, is the Boltzmann constant. Normal hydrogen gas is a 3:1 metastable mixture
of orthohydrogen and parahydrogen respectively and has, therefore, a rotational heat

c,=1c, +3c_. @43)

The application of the formula (2.26), without the remainder terms, to (4.1} and
(4.2) leads to the asymptotic expansion

Co/(Nkg) ~ Cp [{(Nkg) ~14 (45)0 + (945)0 + (4 Jot + (93555)0'
+ (%) + O(") @
as o — 0. We can investigate the asymptotic behaviour of the differences between

C,,C_ and C, by using the complete relation (2.28). In this manner, we obtain the
new result

(Cy — CL)/(Nkg) = 4C, — C_)/(Nkp) ~ 4(=" /)2 exp[—n?/(4c)]
x [1=(7~2/12)(144 4 =)o + (74 /1440)( 17280 + 48072 — 117*) 02
+ (7% /120960)(40320 ~ 36967 — 2417%) 0>
— (74729030 400)(2 661 120 4 69408072 4 22651714 ) 0% + O(0®)]
(4.5)

as o — 0. The formula (4.5) also has, (o leading order, a remainder term of the type
yo = exp{—3w?/(4c)), where - is a constant.

Finaily, we substitute ¢ = ( in (2.12) in order to obtain the further asymptotic
expansion

oo P B
> nexp(—nlo) = il;(l+z rzf‘"(—a)’+£p(0,0)) (4.6)
n=1 r=l
where
£,(0,0)=2(5)" (1), E Fi(L-p+ -7t fe). @D

k=1

The result {4.6), without the remainder term £,(0,c), has also been obtained by
Sutherland (1930) and Cahn and Wolf (1976). It should be noted, however, that in
both these papers the signs of the coeflicients in the asymptotic expansion (4.6) are
given incorrectly.
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